

	
			
			
			[image:]	

	
				
			
				
			
				
	
		
			
	
	Part Number	Hot Search :
			

						PE4255			2SK15			1H224K			D74HC40			HI586008			PCAAWG20			M3321			TL1431I			

			
	
	Product Description

			
	
	Full Text Search

				

		
		
		

			

			
				 	
				To Download
				CORECORDIC-AR Datasheet File

	
				
				If you can't view the
				Datasheet, Please click here to try to view without PDF Reader .	
				

[image:]

			
				
					

				　

			

	

	

		

			
				

				

			

		

		

		 Datasheet File OCR Text:

		 CoreCORDIC CORDIC RTL Generator
Product Summary
Intended Use
* COordinate Rotation DIgital Computer (CORDIC) Rotator Function for Actel FPGAs * Evaluation Version - Supports CORDIC Engine and Test Harness Generation with Limited Parameters. Fully Supported in Libero IDE.
Synthesis and Simulation Support
* * * Libero IDE Synthesis: Synplicity(R), Synopsys(R) Compiler/FPGA Compiler), ExemplarTM (Design
Key Features
* * * * * * * * * * Vector Rotation - Conversion of Polar Coordinates to Rectangular Coordinates Vector Translation - Conversion of Rectangular Coordinates to Polar Coordinates Sine and Cosine Calculation Vector (X, Y) Magnitude (arctan[X/Y]) Calculation
X +Y
2 2
Simulation: OVI-Compliant Verilog Simulators and Vital-Compliant VHDL Simulators.
Table of Contents
General Description ... 1 CoreCORDIC Device Requirements 4 Architectures .. 5 I/O Formats ... 7 CoreCORDIC Configuration Parameters 9 I/O Signal Description .. 9 I/O Interface and Timing .. 11 References .. 12 A Sample Configuration File 13 Ordering Information .. 13 Datasheet Categories ... 13 Appendix I .. 14 Appendix II ... 15
and Phase
8-Bit to 48-Bit Configurable Word Size 8 to 48 Configurable Number of Iterations Parallel Pipelined Architecture for the Fastest Calculation Bit-Serial Architecture for the Smallest Area Word-Serial Architecture for Moderate Speed and Area Word Parallel Data I/Os
Supported Families
* * * * * * * Fusion ProASIC(R)3/E ProASICPLUS (R) Axcelerator(R) RTAX-S SX-A RTSX-S
General Description
CoreCORDIC is an RTL generator that produces an Actel FPGA-optimized CORDIC engine. The CORDIC algorithm by J. Volder provides an iterative method of performing vector rotations using shifts and adds only. The articles listed in "References" on page 12 present a detailed description of the algorithm. Depending on the configuration defined by the user, the resulting module implements pipelined parallel, wordserial, or bit-serial architecture in one of two major modes: rotation or vectoring. In rotation mode, the CORDIC rotates a vector by a specified angle. This mode is used to convert polar coordinates to Cartesian
Core Deliverables
* Full Version - CoreCORDIC RTL Generator. Generates UserDefined CORDIC Model and Test Harness. Fully Supported in the Actel Libero(R) Integrated Design Environment (IDE)
March 2006 (c) 2006 Actel Corporation
v 2 .0
1
CoreCORDIC CORDIC RTL Generator
coordinates, for general vector rotation, and also to calculate sine and cosine functions (see Figure 1). "Appendix I" on page 14 presents mathematical coordinate conversion formulae, and "Appendix II" on page 15 describes examples of a few of the most used CORDIC modes.
Magnitude r Phase
CORDIC Engine
x y
The gain can be compensated for elsewhere in many applications when the system includes the CORDIC engine. To assist a user in doing so, the CoreCORDIC software computes the precise value of the gain and displays it on a screen. In the cases when only relative magnitude is of importance--for example, spectrum analysis and AM demodulation--the constant gain can be neglected. When calculating sine/cosine, the CORDIC gets initialized with a constant reciprocal value of the processing gain r = 1/K. EQ 1 and EQ 2 become
X = cos Y = sin
Figure 1 * CORDIC Engine in Rotation Mode
In vectoring mode, the CORDIC rotates the input vector towards the x axis while accumulating a rotation angle. Vectoring mode is used to convert Cartesian vector coordinates to polar coordinates; i.e., to calculate the magnitude and phase of the input vector (Figure 2).
Thus, the gain does not impact the sine/cosine results or the phase output. To perform the conversions, the CORDIC processor implements the iterative CORDIC equations EQ 5 through EQ 7.
xi + 1 = xi - yi x di x 2
-i
x y
CORDIC Engine
Magnitude r Phase
EQ 5 yi + 1 = yi + xi x di x 2
-i
EQ 6 a i + 1 = a i - d i x arctan (2) EQ 7
-i
Figure 2 * CORDIC Engine in Vectoring Mode
The CORDIC results, such as x, y, and r, are scaled by the inherent processing gain, K, which depends on number of iterations and converges to about 1.647 after a few iterations. The gain is constant for a given number of iterations. When performing Cartesian/polar coordinate conversion, the CORDIC computes the results shown in EQ 1 and EQ 2 in rotation mode.
X = K r cos x EQ 1 Y = K r sin EQ 2
The sign-controlling function di takes the values shown in EQ 8 and EQ 9: * In rotation mode di = -1 if ai < 0, otherwise di = 1
EQ 8
*
In vectoring mode
di = 1 if yi < 0, otherwise di = -1
EQ 9
EQ 3 and EQ 4 show the CORDIC results in vectoring mode.
r = K X +Y
2 2
EQ 3 = arctan (Y X) EQ 4
The input and output data is represented as n-bit words, where n is a user-defined number in the range from 8 to 48. The number of iterations is also defined by a user in the same range. The CORDIC result accuracy improves when the number of iterations is increased, as long as the number of iterations does not exceed data bit width. In other words, the bit width limits the number of meaningful iterations.
A system that utilizes the CORDIC engine (Figure 3 on page 3) consists of the following: * * * A data source generating the vector data to be converted by the CORDIC The CORDIC module configured to work in either rotation or vectoring mode A data receiver accepting the newly converted vector data
2
v2.0
CoreCORDIC CORDIC RTL Generator
Master Clock
clkEn x0 y0 Data Source a0 ldData rst Global Reset nGrst CORDIC Engine xn yn an OR rdyOut Data Receiver
Figure 3 * CORDIC-Based System
The negative nGrst signal resets the CORDIC engine and, optionally, the entire system. After the reset (input nGrst taken high), the CORDIC module is ready to receive data samples to be processed. The module synchronous reset input rst can be used to bring the CORDIC unit to the ready state at any time after the initial global reset. Note: The CORDIC module will lose half-processed data when rst is taken high by the system. The data source supplies the CORDIC engine with the data to be converted. Depending on the mode (rotation or vectoring), the system uses different CORDIC inputs and outputs to enter and obtain the data. Table 1 shows the input/ output signals used in each mode.
Table 1 * CORDIC Connection to the System Input Data CORDIC Input Common Rotation Modes Input vector magnitude Constant 0 Input vector phase x0 y0 a0 Output vector coordinate X Output vector coordinate Y N/A xn yn an Output Data CORDIC Output
Rotation Mode: Sine/Cosine Table Generator Constant reciprocal value of the processing gain r = 1/K Constant 0 Sine/cosine argument x0 y0 a0 Vectoring Mode Input vector coordinate X Input vector coordinate Y Constant 0 x0 y0 a0 Output vector magnitude r N/A Output vector phase xn yn an sin() cos() N/A xn yn an
The system accompanies every new pair of the input data samples with the one-bit ldData signal. Upon receiving the ldData bit, the module assumes the vector coordinates are present on input data busses. Once the CORDIC results are ready, the engine puts these out, accompanied by the one-bit rdyOut signal. Upon receiving the rdyOut bit, the system can supply a new pair of input data and generate another ldData signal. CoreCORDIC can generate three different CORDIC core implementation architectures and an appropriate testbench: * * * Parallel pipelined Word-serial Bit-serial
The parallel pipelined architecture provides the fastest speed, whereas the bit-serial architecture provides the smallest area. The word-serial architecture provides the trade-off of moderate speed and area.
v2.0
3
CoreCORDIC CORDIC RTL Generator
CoreCORDIC Device Requirements
Table 2 provides typical utilization and performance data for CoreCORDIC, implemented in various Actel devices with the CORDIC engine bit resolution set to 24 bits and the number of iterations set to 24. Device utilization and performance will vary depending upon the architecture chosen and the configuration parameters used. Time-driven settings were used when synthesizing parallel architectures; area optimization settings were used in other cases. The CORDIC core does not utilize on-chip RAM blocks.
Table 2 * CoreCORDIC Device Utilization and Performance Cells or Tiles Device Fusion AFS600 AFS600 AFS600 ProASIC3/E A3P250 A3P250 A3P1000 ProASICPLUS APA150 APA150 APA1000 Axcelerator AX125 AX125 AX500 RTAX-S RTAX250S RTAX250S RTAX1000S Bit-serial Word-serial Parallel Rotate Vector Rotate Vector Rotate Vector 196 185 413 405 4,633 4,617 Bit-serial Word-serial Parallel Rotate Vector Rotate Vector Rotate Vector 196 185 413 405 4,633 4,617 Bit-serial Word-serial Parallel Rotate Vector Rotate Vector Rotate Vector 393 394 824 822 14,301 16,594 Bit-serial Word-serial Parallel Rotate Vector Rotate Vector Rotate Vector 297 296 664 658 12,541 14,832 Bit-serial Word- serial Parallel Rotate Vector Rotate Vector Rotate 297 293 668 660 11,810 Engine Architecture Mode Comb Seq Speed Grade -2 110 108 103 101 1,884 Speed Grade -2 110 108 103 101 1,906 1,981 108 107 114 114 1,889 1,936 Speed Grade -2 106 105 124 133 1,832 1,835 Speed Grade -1 106 105 124 133 1,832 1,835 302 290 537 538 6,465 6,452 8% 7% 14% 14% 36% 36% 92 100 74 75 89 81 6,283 5,780 338 333 11.2 12.3 302 290 537 538 6,465 6,452 15% 14% 27% 27% 80% 80% 113 115 103 109 130 124 5,115 5,026 243 229 7.7 8.1 407 404 767 759 14,447 16,813 501 501 938 936 16,190 18,530 7% 7% 12% 12% 59% 68% 8% 8% 15% 15% 29% 33% 83 93 30 26 46 62 61 63 20 19 32 37 6,964 6,215 833 962 21.7 16.1 9,475 9,175 1,250 1,316 31.3 27.0 407 401 771 761 13,694 3% 3% 6% 6% 99% 88 87 30 27 46 6,568 6644 833 926 21.7 Total Utilization Clock Rate, % MHz Transform Time, nsec
Speed Grade STD
Note: The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in different utilization and performance values.
4
v2.0
CoreCORDIC CORDIC RTL Generator
Table 2 * CoreCORDIC Device Utilization and Performance (Continued) Cells or Tiles Device 54SX-A 54SX72A 54SX72A RT54SX-S RT54SX72S RT54SX72S Bit-serial Word-serial Rotate Vector Rotate Vector 189 190 677 664 Bit-serial Word-serial Rotate Vector Rotate Vector 190 195 656 643 Engine Architecture Mode Comb Seq Speed Grade -2 105 105 132 124 Speed Grade -1 104 104 132 125 293 294 809 789 5% 5% 13% 13% 55 55 33 34 10,509 10,509 758 735 295 300 788 767 5% 5% 13% 13% 67 71 55 50 8,627 8,141 455 500 Total Utilization Clock Rate, % MHz Transform Time, nsec
Note: The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in different utilization and performance values.
Architectures
Word-Serial Architecture
Direct implementation of the CORDIC iterative equations (see "References" on page 12) yields the block diagram shown in Figure 4. The vector coordinates to be converted, or initial values, are loaded via multiplexers into registers RegX, RegY, and RegA. RegA, along with an adjacent adder/subtractor, multiplexer, and a small arctan LUT, is often called an angle accumulator. Then on each of the following clock cycles, the registered values are passed through adders/subtractors and shifters. The results described by EQ 5 through EQ 7 on page 2 are loaded back to the same registers. Every iteration takes one clock cycle, so that in n clock cycles, n iterations are performed and the converted coordinates are stored in the registers.
x0 +/-
>> i di
>> i
y0 di -/+
arctan LUT
a0
+/-
RegX Sign yi xn Mode: Rotation/Vectoring
Figure 4 * Word-Serial CORDIC Block Diagram
RegY Sign ai yn Sign Controlling Logic
RegA
an di
v2.0
5
CoreCORDIC CORDIC RTL Generator
Depending on the CORDIC mode (rotation or vectoring), the sign-controlling logic watches either the RegY or the RegA sign bit. Based on EQ 8 and EQ 9 on page 2, it decides what type of operation (addition or subtraction) needs to be performed at every iteration. The arctan LUT keeps a pre-computed table of the arctan(2-i) values. The number of entries in the arctan LUT equals the desirable number of iterations, n. The word-serial CORDIC engine takes n + 1 clock cycles to complete a single vector coordinate conversion.
x0
y0
a0
d0 >> 0 +/- Reg x1 d0 >> 0 -/+ Reg y1 d1 >> 1 +/- Reg x2 d1 >> 1 -/+ Reg y2 d2 >> 2 +/- Reg xn-1 d2 >> 2 -/+ Reg yn-1 dn-1 >> n-1 +/- Reg xn dn-1 >> n-1 -/+ Reg yn dn-1 d2 d1 d0
arctan (20)
+/- Reg a1
d0
Parallel Pipelined Architecture
This architecture presents an unrolled version of the sequential CORDIC algorithm above. Instead of reusing the same hardware for all iteration stages, the parallel architecture has a separate hardware processor for every CORDIC iteration. An example of the parallel CORDIC architecture configured for rotation mode is shown in Figure 5. Each of the n processors performs a specific iteration, and a particular processor always performs the same iteration. This leads to a simplification of the hardware. All the shifters perform the fixed shift, which means these can be implemented in the FPGA wiring. Every processor utilizes a particular arctan value that can also be hardwired to the input of every angle accumulator. Yet another simplification is an absence of a state machine. The parallel architecture is obviously faster than the sequential architecture described in the "Word-Serial Architecture" section on page 5. It accepts new input data and puts out the results at every clock cycle. The architecture introduces a latency of n clock cycles.
arctan (2-1)
+/- Reg a2
d1
arctan (2-2)
+/- Reg an-1
d2
arctan (2n-1)
+/- Reg an
dn-1
Figure 5 * Parallel CORDIC Architecture
6
v2.0
CoreCORDIC CORDIC RTL Generator
Bit-Serial Architecture
Whenever the CORDIC conversion speed is not an issue, this architecture provides the smallest FPGA implementation. For example, in order to initialize a Sine/Cosine LUT, the bit-serial CORDIC is the solution. Figure 6 depicts the simplified block diagram of the bitserial architecture. The shift registers get loaded with initial data presented in bit-parallel form, i.e., all bits at once. The data then shifts to the right, before arriving the serial adders/subtractors. Every iteration takes m clock cycles, where m is the CORDIC bit resolution. Serial shifters are implemented by properly tapping the bits of the shift registers. The control circuitry (not shown in Figure 6) provides sign-padding of the shifted serial data to realize its correct sign extension. The results from the serial adders return back to the shift registers, so that in m clock cycles the results of another iteration are stored in the shift registers. A single full CORDIC conversion takes nxm+2 clock cycles.
I/O Formats
Q Format Fixed-Point Numbers
CoreCORDIC, as virtually any FPGA DSP core does, utilizes fixed-point arithmetic. In particular, the numbers the core operates with are presented as two's complement signed fractional numbers. To identify the position of a binary point separating the integer and fractional portions of the number, the Q format is commonly used. An mQn format number is an (n+1)-bit signed two's complement fixed-point number: a sign bit followed by n significant bits with the binary point placed immediately to the right of the m most significant bits. The m MSBs represent the integer part, and (n-m) LSBs represent the fractional part of the number, called the mantissa. Table 3 depicts an example of a 1Qn format number.
Table 3 * 1Qn Format Number Bit 2n Sign Bit 2n-1 Integer bit Position of the Binary Point Bits [2n-2 : 20] Mantissa
x0
Table 4 * Qn Format Number
msb n-2
Shift Reg xn 3 2 1
lsb 0 +/-
Bit 2n Sign
Position of the Binary Point
Bits [2n-1 : 20] Mantissa
signX signY
n-2 msb
3 Shift Reg yn y0
2
1
0 lsb
+/-
The following sections explain in detail the formats of the input and output signals. The linear and angular values are explained separately. The linear signals include Cartesian coordinates and a vector magnitude. These come to the CORDIC engine inputs x0 and y0, or appear on its outputs xn and yn. Since the sine and cosine functions the CORDIC calculates are essentially the Cartesian coordinates of the vector, the angular signals include the vector phase that comes to the CORDIC engine input a0, or appears on its output an. Both linear and angular signals utilize mQn formats and appropriate conversion rules from floating-point to the mQn formats.
I/O Linear Format
a0 msb Shift Reg an lsb +/- arctan Serial ROM
Figure 6 * Bit-Serial CORDIC Architecture
The CoreCORDIC engine utilizes the 1Qn format shown in Table 3. Though the 1Qn format numbers are capable of expressing fixed-point numbers in the range from (-2n) to (2n - 2m-n), the input linear data must be limited to fit the smaller range from (-2n-1) to (2n-1). In terms of floating-point numbers, the input must fit the range from -1.0 to +1.0. For example, the 1Q9 format input data range is limited by the following 10-bit numbers: Max input negative number of -1.0: 1100000000 11.00000000
v2.0
7
CoreCORDIC CORDIC RTL Generator
Max input positive number of +1.0: 0100000000 01.00000000 This precaution is taken to prevent the data overflow that otherwise could occur as a result of the CORDIC inherent processing gain. The output data obviously do not have to fit the limited range. To convert floating-point linear input data to the 1Qn format, follow the simple rule in EQ 10: 1Qn Fixed-Point Data = 2
n-1
Here it is assumed the floating-point data are presented in the range from -1.0 to 1.0. The product on the right-hand side of EQ 10 contains integer and fractional parts. The fractional part has to be truncated or rounded. Table 5 shows a few examples of converting the floating-point numbers to the 1Q9 format. To convert the 1Qn format back to the floating-point format, use EQ 11. Floating-Point Data = 1Qn Fixed-Point Data/2n-1
EQ 11
x Floating-Point Data
EQ 10
Table 5 * Floating-Point to 1Q9 Format Conversion Floating-Point Number X 1.00 0.678915 0.047216 -1.00 -0.678915 -0.047216 P = X x 2(n-1) 256 173.80224 12.087296 -256 -173.80224 -12.087296 P Rounded 256 174 12 -256 -174 -12 Common Binary Format 0100000000 0010101101 0000001100 1100000000 1101010011 1111110100 1Q9 Format 01.00000000 00.10101101 00.00001100 11.00000000 11.01010011 11.11110100
I/O Angular Format
The angle (phase) signals are a0 and an. They are presented in Qn format, as shown in Table 4 on page 7. The relation between the floating-point angular value expressed in radians and the Qn format is shown in EQ 12. 1 Qn Fixed-Point Angle = 2n-1 x Floating-Point Angle/
EQ 12
In EQ 12, the floating-point angle is measured in radians. The product on the right-hand side of EQ 10 contains integer and fractional parts. The fractional part must be truncated or rounded. EQ 13 presents a rule for the conversion from the Qn format back to the floating-point radian measure. Floating-Point Angle = Qn Fixed-Point Angle x /2
n-1
The conversion formulae (EQ 12 and EQ 13) support an important feature that greatly simplifies sine and cosine table calculations. Such tables usually have power of two entries (lines). At the same time, they often span angular values from -/2 to /2 radians. Therefore, it is beneficial to represent the angle of /2 radians with the power of two fixed-point number. In particular, when having the CORDIC engine calculate the sin() and cos() table, it is sufficient to increment the fixed-point angular argument at each cycle. The angular value range is from -/2 to /2, or in Q9 format: Max input negative number of -/2: 1100000000 .1100000000 Max input positive number of +/2: 0100000000 .0100000000
EQ 13
Table 6 shows a few examples of converting floating-point numbers to Q9 format.
Table 6 * Examples of Angular Value to Fixed-Point Conversion Floating-Point Angle A (rad) /2 /4 /256 1.5707963268 0.7853981634 0.0122718463 P = A x 2n 256 128 2 Common Binary Format 0100000000 0010000000 0000000010 Q9 Format (sign.mantissa) 0.100000000 0.010000000 0.000000010
1. This format means, literally, the angle of radians is expressed as the floating-point value of 1.0.
8
v2.0
CoreCORDIC CORDIC RTL Generator
Table 6 * Examples of Angular Value to Fixed-Point Conversion -/2 -/4 -/256 -1.5707963268 -0.7853981634 -0.0122718463 -256 -128 -2 1100000000 1110000000 1111111110 1.100000000 1.110000000 1.111111110
CoreCORDIC Configuration Parameters
CoreCORDIC generates the CORDIC engine RTL code based on parameters set by the user when generating the module. The core generator supports the variations specified in Table 7.
Table 7 * Core Generator Parameters Parameter Name module_name architecture mode Description Name of the generated RTL code module Bit-serial, word-serial, or word parallel architecture Values - 0 (bit-serial), 1 (word-serial), (parallel). Default value = 0. 2
Vector rotation (polar to rectangular coordinate conversion and sine/ 0 (vector rotation), 1 (vector cosine calculation) or vector translation (rectangular to polar translation). Default value = 0. conversion) I/O data bit width Number of iterations Family of the Actel FPGA device RTL code language 8-48. Default value = 16. 8-48. Default value = bit_width.* ax (Axcelerator), apa (ProASICPLUS), pa3 (ProASIC3), sx (SX-A), af (Fusion) vhdl, verilog
bit_width iterations fpga_family lang
Note: *A warning is issued if the number of iterations is set greater than the bit width.
I/O Signal Description
Figure 7 shows the CoreCORDIC module pinout.
CORDIC x0 y0 a0 IdData rst clkEn clk nGrst
Figure 7 * CoreCORDIC I/O Signals
xn yn an rdyOut
v2.0
9
CoreCORDIC CORDIC RTL Generator
The CoreCORDIC module I/O signal functionality is listed in Table 8.
Table 8 * I/O Signal Descriptions Signal Name x0 [bit_width - 1 : 0] Direction Description Input Input data bus x0. The abscissa of the input vector in the vectoring mode or the magnitude of the input vector in rotation mode should be placed on this bus. Bit [bit_width - 1] is the MSB. Data are assumed to be presented in two's complement format. The other vector coordinates are to be supplied simultaneously. Input data bus y0. The ordinate of the input vector in the vectoring mode should be placed on this bus. In rotation mode, the bus should be grounded or left idle. Bit [bit_width - 1] is the MSB. Data are assumed to be presented in two's complement format. The other vector coordinates are to be supplied simultaneously. Input angle data bus a0. The phase of the input vector in the rotation mode should be placed on this bus. In vectoring mode, the bus should be grounded or left idle. Bit [bit_width - 1] is the MSB. Data are assumed to be presented in two's complement format. The other vector coordinates are to be supplied simultaneously. System clock. Active rising edge. System asynchronous reset. Active low. System/module synchronous reset. Active high. Valid in parallel architecture only. Resets all registers of the core. Clock enable signal. Active high. Valid in word-serial and bit-serial architectures. Load input data. Indicates that input vector coordinates are ready for the CORDIC engine to be processed. Active high. Valid in word-serial and bit-serial architectures. Output data (vector coordinates or sine/cosine values) are ready for the data receiver to read. Active high. Valid in word-serial and bit-serial architectures. Output data bus xn. The abscissa of the output vector in rotation mode or the magnitude of the output vector in the vectoring mode appears on this bus. Bit [bit_width - 1] is the MSB. Data are presented in two's complement format. The other vector coordinates emerge on their respective output busses simultaneously. Output data bus yn. The ordinate of the output vector in rotation mode. Bit [bit_width - 1] is the MSB. Data are presented in two's complement format. The other vector coordinates emerge on their respective output busses simultaneously. Output data bus an. The phase of the output vector in vectoring mode. Bit [bit_width - 1] is the MSB. Data are presented in two's complement format. The other vector coordinates emerge on their respective output busses simultaneously.
y0 [bit_width - 1 : 0]
Input
a0 [bit_width - 1 : 0]
Input
clk nGrst rst clkEn ldData rdyOut xn [bit_width-1 : 0]
Input Input Input Input Input Output Output
yn [bit_width-1 : 0]
Output
an [bit_width-1 : 0]
Output
10
v2.0
CoreCORDIC CORDIC RTL Generator
I/O Interface and Timing
Upon reset, the CORDIC core returns to its initial state. Signal nGrst asynchronously resets any architecture. Other I/O interfaces and timing depend on core architecture.
computation cycle and discards the incomplete results of the interrupted cycle. Once the CORDIC engine completes calculating the result, it generates rdyOut signal one clock period in width. The result on the output busses (an, xn, and yn) is valid while the rdyOut signal is active. The next ldData signal can coincide with the rdyOut signal. Obviously a valid, fresh set of input data, shown as In1 in Figure 8, must be ready by then. One cycle of CORDIC computation = (bit_width x iterations + 2) clock cycles. Signal clkEn can be manipulated as desired. While this signal is low, the CORDIC engine retains all the data it has collected or processed so far. Normally, the bit-serial CORDIC engine is used to fill up the LUT on a power-on event. Once the CORDIC fulfills this function, a high-level state machine may disable the clkEn signal.
Bit-Serial Architecture Interface and Timing
Figure 8 depicts a typical timing diagram for the bitserial architecture. Signal ldData resets the bit-serial CORDIC module and loads a set of data present on the a0, x0, and y0 input busses. The set of input data is shown in Figure 8 as In0. Normally, a next ldData signal has to come after the end of a current CORDIC cycle; i.e., after the rdyOut signal appears on the module output. In the case that the next ldData signal is issued prior to the end of the current cycle, the CORDIC engine starts a new
CORDIC Cycle clk
IdData
x0, y0, a0
In0
In1
rdyOut
xn, yn, an
Figure 8 * Bit-Serial Architecture Timing Diagram
Out0
Word-Serial Architecture Interface and Timing
Figure 9 on page 12 depicts a timing diagram for the word-serial architecture. It is very similar to the bit-serial timing diagram. Signal ldData resets the word-serial CORDIC module and loads the set of data present on the a0, x0, and y0 input busses. The set of input data is shown in Figure 9 on page 12 as In0. Normally the next ldData signal must come after the end of the current CORDIC cycle; i.e., after the rdyOut signal appears on the module output. In the case that the next ldData signal is issued prior to the end of a current cycle, the CORDIC engine starts a new computation cycle and discards the incomplete results of the interrupted cycle.
Once the CORDIC engine completes calculating the result, it generates a rdyOut signal one clock period in width. The result on the output busses (an, xn, and yn) is valid while the rdyOut signal is active. The next ldData signal can immediately follow the rdyOut signal. Obviously a valid, fresh set of input data, shown as In1, must be ready by then. One cycle of CORDIC computation = (iterations + 1) clock cycles.
v2.0
11
CoreCORDIC CORDIC RTL Generator
Signal clkEn can be manipulated as desired. While this signal is low, the CORDIC engine retains all the data it has collected or processed so far. As an example, the word-serial CORDIC engine is used to fill up the LUT on a power-on event. Once the CORDIC completes the task, a high-level state machine may disable the clkEn signal.
CORDIC Cycle clk
IdData In0
x0, y0, a0
In1
rdyOut
xn, yn, an
Figure 9 * Word-Serial Architecture Timing Diagram
Out0
Parallel Architecture Interface and Timing
Figure 10 depicts a timing diagram for the parallel architecture. At the beginning of every clock cycle, a fresh set of input arguments a0, x0, and y0 enters the CORDIC engine. No control signals accompany the input data. The CORDIC engine puts out the results at the beginning of every clock cycle with the latency of iterations clock cycles. Signal rst synchronously resets the parallel architecture; i.e., resets all the registers of the parallel engine.
CORDIC Latency clk x0, y0, a0 xn, yn, an
Figure 10 * Parallel Architecture Timing Diagram
In0
In1
In2
In3 Out0 Out1 Out2 Out3
References
J.E. Volder. 1959. "The CORDIC Trigonometric Computing Technique." IRE Transaction on Electronic Computers, EC8:330-334. http://lap.epfl.ch/courses/comparith/Papers/3-Volder_CORDIC.pdf Ray Andraka, "A Survey of CORDIC Algorithms for FPGA Based Computers," http://www.fpga-guru.com/files/crdcsrvy.pdf, 1998. Norbert Lindlbauer, "The CORDIC-Algorithm for Computing a Sine," http://www.cnmat.berkeley.edu/~norbert/cordic/ node4.html, 2000. Grant R. Griffin, "CORDIC FAQ," http://www.dspguru.com/info/faqs/cordic.htm.
12
v2.0
CoreCORDIC CORDIC RTL Generator
A Sample Configuration File
The following is an example of the configuration file: module_name architecture mode bit_width iterations fpga_family lang Cordic_test 0 0 16 16 pa3 verilog
Ordering Information
Order CoreCORDIC through your local Actel sales representative. Use the following numbering convention when ordering: CoreCORDIC-XX, where XX is listed in Table 9.
Table 9 * Ordering Codes XX EV AR UR Description Evaluation version RTL for unlimited use on Actel devices RTL for unlimited use and not restricted to Actel devices
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these categories are as follows:
Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product information. This brief summarizes specific device and family information for unreleased products.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
v2.0
13
CoreCORDIC CORDIC RTL Generator
Appendix I
Polar and Rectangular Coordinate Relations
Y
r
X
Figure 11 * Cartesian Coordinate Definition
The Cartesian coordinates (X, Y) are defined in terms of the polar coordinates r (vector magnitude, or radial coordinate) and (vector phase, or polar angle), as given in EQ 14 and EQ 15.
X = r cos EQ 14 Y = r sin EQ 15
In terms of Cartesian coordinates, the polar coordinates are expressed as given in EQ 16 and EQ 17.
r= X +Y
2 2
EQ 16 = arctan (Y X) EQ 17
14
v2.0
CoreCORDIC CORDIC RTL Generator
Appendix II
Examples of CORDIC Modes
The CORDIC engine is in rotation mode. Input data represent magnitude r and phase of the vector whose polar coordinates are to be converted to Cartesian coordinates. The CORDIC engine puts out a pair of Cartesian coordinates (X*K, Y*K) scaled by processing gain K (Figure 12).
Polar to Cartesian Coordinate Conversion
Polar to Cartesian
 Y*K r X*K
Figure 12 * Polar to Cartesian Vector Conversion
r*K
General Rotation
The CORDIC engine is in rotation mode. Input data (X0 , Y0 , Angle) represent initial vector Cartesian coordinates, as well as an angle to rotate the vector. The CORDIC engine puts out a pair of Cartesian coordinates (X*K, Y*K) of the resulting rotated vector scaled by processing gain K (Figure 13).
General Rotation
Y*K
r*K
Y0
M
X*K Angle to Rotate
X0
Figure 13 * CORDIC General Vector Rotation
v2.0
15
CoreCORDIC CORDIC RTL Generator
The CORDIC engine is in rotation mode. Input data r = 1/K and phase represent initial vector polar coordinates. The CORDIC engine puts out a pair of Cartesian coordinates equal to (cos, sin), as shown in Figure 14.
Sine and Cosine CORDIC Calculator
Sin/Cos
sin
1 1/K cos
Figure 14 * Sine and Cosine CORDIC Computation
Cartesian to Polar Coordinate Conversion
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The CORDIC engine puts out a pair of polar coordinates: magnitude r*K and phase of the input vector (Figure 15).
Cartesian to Polar
 Y0 r*K X0
Figure 15 * Cartesian to Polar Coordinate Conversion
16
v2.0
CoreCORDIC CORDIC RTL Generator
CORDIC Square Root Calculator
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The CORDIC engine puts out a pair of polar coordinates: magnitude r = K x 0 + y 0 (Figure 16).
2 2
and phase
 of the input vector
Square Root Calculator
Y0 r*K X0
Figure 16 * CORDIC Square Root Calculator
CORDIC Arctan Calculator
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The CORDIC engine puts out a pair of polar coordinates: magnitude r and phase = arctan(Y0 / X0) of the input vector.
Arctan Calculator
arctan(Y0/X0) Y0
X0
Figure 17 * CORDIC Arctan Phase Calculator
v2.0
17
Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.
www.actel.com
Actel Corporation 2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600 Actel Europe Ltd. Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0) 1276 401 450 Fax +44 (0) 1276 401 490 Actel Japan www.jp.actel.com EXOS Ebisu Bldg. 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 Actel Hong Kong www.actel.com.cn Suite 2114, Two Pacific Place 88 Queensway, Admiralty Hong Kong Phone +852 2185 6460 Fax +852 2185 6488
51700064-0/3.06

		

		
			

			▲Up To
				Search▲

		
	
Price & Availability of CORECORDIC-AR
	[image:]
	
			

	

	
			
		

				
	
				All Rights Reserved ©
				IC-ON-LINE 2003 - 2022

	

	
			[Add Bookmark] [Contact
				Us] [Link exchange] [Privacy policy]
	
				Mirror Sites : [www.datasheet.hk]
				[www.maxim4u.com] [www.ic-on-line.cn]
				[www.ic-on-line.com] [www.ic-on-line.net]
				[www.alldatasheet.com.cn]
				[www.gdcy.com]
				[www.gdcy.net]

	

	

.
.
.
.
.

		 	We use cookies to deliver the best possible
	web experience and assist with our advertising efforts. By continuing to use
	this site, you consent to the use of cookies. For more information on
	cookies, please take a look at our
	Privacy Policy.	
	X

